Jefferson County Department of Health

2025 Annual Ambient Air Monitoring Network Plan

Environmental Health Services
Air and Radiation Protection Division
1400 Sixth Avenue South
Birmingham, AL 35233

Table of Contents

1.0	Background	1
2.0	Overview	1
3.0	Types of Monitoring Stations	2
	Proposed Changes for 2025/2026	
5.0	Monitoring Site Discussion	3
6.0	Monitoring Site Location Coordinates	8
	Monitoring Network Assessment	
Appe	endix A: Monitoring Site Pictures and Maps	11
Appe	endix B: Inventory of Monitoring Equipment	24

Acronyms

Appendix D Volume 40, Code of Federal Regulations, Part 58, Appendix D

AQI Air Quality Index AQS Air Quality System

CASTNET Clean Air Status and Trends Network

CBSA Core Based Statistical Area
CFR Code of Federal Regulations

CO Carbon Monoxide

CSA Combined Statistical Area
FEM Federal Equivalent Method
FRM Federal Reference Method

JCDH Jefferson County Department of Health

MSA Metropolitan Statistical Area μSA Micropolitan Statistical Areas

NAAQS National Ambient Air Quality Standards

NCore National Core Multipollutant Monitoring Station

 NO_x Oxides of Nitrogen NO_y Total Reactive Nitrogen

NO₂ Nitrogen Dioxide

O₃ Ozone

PAMS Photochemical Assessment Monitoring Station

PM Particulate matter

PM_{2.5} Particulate matter 2.5 micrometers in diameter or less PM₁₀ Particulate matter 10 micrometers in diameter or less

PM_{10-2.5} Particulate matter with a diameter between 2.5 and 10 micrometers

QAPP Quality Assurance Project Plan
QMP Quality Management Plan

SLAMS State or Local Air Monitoring Station

SO₂ Sulfur Dioxide

SPM Special Purpose Monitor
STN Speciation Trends Network

USEPA United States Environmental Protection Agency

VOCs Volatile Organic Compounds

1.0 Background

Federal Regulations (40 CFR 58.10) require that State and Local Agencies operating an ambient air quality monitoring network shall review their air quality monitoring network on an annual basis. Any needed modifications to the network should be identified. A detailed monitoring network description should also be included. In addition, the plan shall be available for public comment. The Jefferson County Department of Health's (JCDH) Ambient Air Monitoring Network Plan is available on the JCDH website at:

https://www.jcdh.org/SitePages/Programs-Services/Scores-

Lists/Air/AirPollutionControl.aspx?AQTab=Notices

JCDH's Ambient Air Monitoring Network Plan was placed on the website on May 2025 for a 30-day public review and comment period.

The Monitoring Network review that is specified in 40 CFR 58.10 contains the following elements that apply to each monitoring site:

- The USEPA Air Quality System (AQS) site identification number.
- The location, including street address and geographical coordinates.
- The sampling and analysis method(s) for each measured parameter.
- The operating schedules for each monitor.
- Any proposals to remove or move a monitoring station within a period of 18 months following plan submittal.
- The monitoring objective and spatial scale of representativeness for each monitor as defined in Appendix D of Part 58.
- The identification of any sites that are suitable and sites that are not suitable for comparison against the annual PM_{2.5} and Ozone National Ambient Air Quality Standards (NAAQS) as described in part 58.30.
- The MSA, CBSA, CSA or other area represented by the monitor.
- The annual monitoring network plans and or periodic network assessments are subject to regional approval according to part 58.14.

2.0 Overview

The ambient air monitoring network for Jefferson County, Alabama is operated by the Jefferson County Department of Health (JCDH). Ambient air monitors in Jefferson County, Alabama are operated for a variety of monitoring objectives. These objectives include determining if Jefferson County meets the National Ambient Air Quality Standards, providing public information to US Environmental Protection Agency's (USEPA) AirNow data mapping website, Air Quality Index (AQI) reporting for public information, background data collection, spatial considerations, and special projects. The daily AQI forecast for Jefferson County, Alabama is reported on the JCDH website at:

https://www.jcdh.org/SitePages/Programs-Services/EnvironmentalHealth/Air-RadiationProtectionDivision/AirQualForecast.aspx

In addition, hourly Ozone (O_3), continuous Particulate Matter (PM_{10} and $PM_{2.5}$), Nitrogen Dioxide (NO_2), Sulfur Dioxide (SO_2), and Carbon Monoxide (PO_2) data is reported to the USEPA AirNow site. 40 CFR 58 has set minimum monitoring requirements for the pollutants that are to be compared with the NAAQS. These minimum requirements are based on population, the level of monitored pollutants, and Metropolitan Statistical Areas (MSA) as defined in the latest US Census information. Jefferson County has a 2020 MSA population estimate of 674,721. The Core Based Statistical Area (PO_2) is a collective term for both MSA and Micropolitan Statistical Areas (PO_2). The population of the CBSA which includes the counties of Jefferson, Bibb, Blount, Chilton, Shelby, St. Clair, and Walker has a 2020 population estimate of 1,180,631.

JCDH air monitoring site data are suitable for NAAQS comparisons per appendices A, C, D, and E. JCDH's Quality Management Plan (QMP) is current with an approval date of February 13, 2025. JCDH Quality Assurance Project Plan (QAPP) for Ambient Air Quality Monitoring of Criteria and Multi-Pollutants is current with an approval date of March 27, 2025.

Based on 40 CFR part 58, Appendix D, JCDH began making Photochemical Assessment Monitoring (PAMS) measurements at the NCore site on the established begin date of June 1, 2021.

JCDH installed PM_{2.5} FEMs at its sites and intends to continue coding them as SPMs as outlined in the EPA-approved 2024 Network Plan. Previous years have shown issues with the FEMs thus JCDH will operate FRMs at these sites for NAAQS comparability as well as determining if the FEMs data are comparable to the FRMs.

3.0 Types of Monitoring Stations

CASTNET – *Clean Air Status and Trends Network*: is a national air quality monitoring network designed to provide data to assess trends in air quality, atmospheric deposition, and ecological effects due to changes in air pollutant emissions. CASTNET provides long-term monitoring of air quality in rural areas to determine trends in regional atmospheric nitrogen, sulfur, and ozone concentrations and deposition fluxes of sulfur and nitrogen pollutants to evaluate the effectiveness of national and regional air pollution control programs. US Environmental Protection Agency sponsored CASTNET ozone monitors are Part 58 compliant, therefore the data can be used for regulatory purposes. CASTNET ozone data is now reported to the Air Quality System (AQS).

NCore – *National Core multi-pollutant monitoring station:* Sites that measure multiple pollutants at trace levels to provide support to integrated air quality management data needs. Each state is required to operate one NCore site.

PAMS – *Photochemical Assessment Monitoring Station*: PAMS are established to obtain more comprehensive data in areas with high levels of ozone pollution by also monitoring oxides of nitrogen (NOx) and volatile organic compounds (VOCs). PAMS monitoring requirements were revised in the 2016 ozone NAAQS rule and a PAMS site is required in the state of Alabama in Jefferson County.

SLAMS – *State or Local Ambient Monitoring Station*: The SLAMS make up ambient air quality monitoring sites that are primarily needed for National Ambient Air Quality Standard comparisons.

STN – $PM_{2.5}$ Speciation Trends Network: A PM_{2.5} speciation station designated to be part of the speciation trends network. This network provides chemical species data of fine particulates. There are currently two STN sites located in Jefferson County.

Supplemental Speciation – Any $PM_{2.5}$ speciation station that is used to gain supplemental data and is not dedicated as part of the speciation trends network.

4.0 Proposed Changes for 2025/2026

- Relocation of one manual FRM PM_{2.5} monitor which serves as a QA collocated FRM monitor from Wylam to North Birmingham site.
- Reclassify the spatial scale for all monitors at the Arkadelphia site from "neighborhood" to "micro."
- Removal of CO monitor from Wylam as it is not a regulatory requirement under 40 CFR part 58, and has continually reported data below NAAQS levels for the past 5 years.
- Reclassify the PM_{2.5} monitor at Arkadelphia as a non-regulatory, non-NAAQS monitor for the purpose of comparison to the annual PM_{2.5} NAAQS.
- JCDH formally requests for 2-year PM2.5 NAAQS exclusions for all five continuous FEM PM_{2.5} monitors while they are operated as SPMs under 40 CFR 58.20 to assess the PM2.5 FEM data comparability as required by 40 CFR 58.11(e).

5.0 Monitoring Site Discussion

JCDH's ambient air monitoring network has been reviewed based on historic monitoring data, air quality monitoring regulations, data representation based on spatial considerations, special data needs, and changes needed based on the monitoring regulations. The items used in the evaluation were the following: AQS database, the 40 CFR parts 53 and 58 documents, and the census data and maps. JCDH monitors are classified as either State or Local Air Monitoring Station (SLAMS) or Special Purpose Monitor (SPM).

The following describes the purposes and any changes related to each monitor in the ambient air monitoring network in Jefferson County based on the review of the existing monitoring efforts.

1. Leeds (01-073-1010) – JCDH operates one O_3 monitor, one continuous FEM PM_{10} monitor, one continuous FEM $PM_{2.5}$ monitor, and one manual FRM $PM_{2.5}$ monitor. JCDH formally requests a 2-year $PM_{2.5}$ NAAQS exclusion for the continuous FEM $PM_{2.5}$ monitor while it is operated as an SPM under 40 CFR 58.20 to assess the $PM_{2.5}$ FEM data comparability as required by 40 CFR 58.11(e).

- **Site Approval Status:** Site and monitors meet all design criteria for the monitoring network. The sample inlet for the O₃ is approximately 4.6 meters above ground level, the continuous PM₁₀ and PM_{2.5} monitor is approximately 4.8 meters above ground level. No trees or obstacles impact the siting criteria for this site.
- **2.** McAdory (01-073-1005) JCDH operates one O_3 monitor, one continuous FEM PM₁₀ monitor, one continuous FEM PM_{2.5} monitor, and one manual FRM PM_{2.5} monitor. JCDH formally requests a 2-year PM_{2.5} NAAQS exclusion for the continuous FEM PM_{2.5} monitor while it is operated as an SPM under 40 CFR 58.20 to assess the PM_{2.5} FEM data comparability as required by 40 CFR 58.11(e).
 - **Site Approval Status:** Site and monitors meet all design criteria for the monitoring network. The sample inlet for the O₃ is approximately 4.6 meters above ground level, the continuous PM_{2.5} monitor is approximately 4.7 meters above ground level, and the particulate manual monitors are approximately 5 meters above ground. No trees or obstacles impact the siting criteria for this site.
- 3. North Birmingham (NCore) (01-073-0023) JCDH operates a NCore site which contains a full complement of instruments that includes: meteorological, IMPROVE, RADNET, and PAMS. The ambient air monitoring parameters currently include one O₃ monitor, one SO₂ monitor, one CO monitor, Nitric Oxides (NO_x and NO_y) monitors, one manual FRM PM_{2.5} monitor, speciated PM_{2.5}, one continuous FEM PM_{2.5}, one continuous FEM PM₁₀ monitor, and one FEM PM_{10-2.5} monitor. Meteorological instruments include wind speed, wind direction, ambient temperature, barometric pressure, and relative humidity. JCDH formally requests a 2-year PM_{2.5} NAAQS exclusion for the continuous FEM PM_{2.5} monitor while it is operated as an SPM under 40 CFR 58.20 to assess the PM_{2.5} FEM data comparability as required by 40 CFR 58.11(e). JCDH will be relocating the QA collocated FRM PM_{2.5} monitor from Wylam to North Birmingham (NCore) site during summer 2025.
 - Site Approval Status: Site and monitors meet all design criteria for the monitoring network. The meteorological tower is approximately 30 meters above ground level. The NO_x, CO, and SO₂ sample inlets are approximately 4.3 meters above ground level. The O₃ sample inlet is approximately 4.6 meters above ground level, and PAMS is approximately 4.7 meters above ground level. The continuous particulate monitor is approximately 4.6 meters above ground level, while the manual particulate monitors and speciated PM_{2.5} monitors are approximately 4 meters above ground level. IMPROVE and RADNET are operated at ground level. No trees or obstacles impact the siting criteria for this site.
- 4. Arkadelphia (Near-Road) (01-073-2059) JCDH operates one NO_x monitor, one CO monitor, and one manual FRM PM_{2.5} monitor at this site. Meteorological instruments include wind speed, wind direction, ambient temperature, barometric pressure, and relative humidity. JCDH proposes reclassifying all monitors at this site from "neighborhood" to "micro" spatial scale and the PM2.5 monitor as a non-NAAQS monitor for the purpose of comparison to the annual PM_{2.5} NAAQS.

The PM_{2.5} data collected at the Arkadelphia monitoring site is not representative of the overall Birmingham-Hoover MSA level of PM_{2.5} exposure. The site was established in 2014 as a near-road site with the spatial scale classified as a "neighborhood" site. The site is located around 20 meters from the nearest lane of interstate, within a unique hotspot, along the corridor of Interstate 20 and Interstate 59 and experiences heavy traffic flow. The siting guidance for near-road ambient monitoring sites (Table 4.3 in *Near-road NO₂ Monitoring Technical Assistance Document, 2012*) states that the first near-road site in an MSA has to be located near the highest traffic counts in the MSA and placed "as near as practicable to the outside nearest edge of the traffic lanes of the target road segment; but shall not be located at a distance greater than 50 meters, in the horizontal, from the outside nearest edge of the traffic lanes of the target road segment."

The spatial scale of "neighborhood" is defined as "concentrations within some extended area of the city that has relatively uniform land use with dimensions in the 0.5 to 4.0 kilometers range" and spatial scale of "micro" is defined as "concentrations in air volumes associated with area dimensions ranging from several meters up to about 100 meters" (Section 6.1 of Quality Assurance Handbook for Air Pollution Measurement Systems Volume II Ambient Air Quality Monitoring Program, January 2017). Since the Arkadelphia monitoring site was established to be no greater than 50 meters from the outside nearest edge of traffic lanes (a unique hotspot with a monitoring objective of a source impact), all monitors at this site should be reclassified from a spatial scale of "neighborhood" to a spatial scale of "micro" since the site is under 100 meters from a source impact.

Due to the requirement of the near-road network, $PM_{2.5}$ measurements at one of the highest traffic counts in the MSA and around 20 meters to the outside nearest edge of the traffic lanes are not representative of the $PM_{2.5}$ concentrations across the Birmingham-Hoover MSA. The traffic counts along this corridor of Interstate 20 and Interstate 59 are not uniform across all of the Birmingham MSA. Therefore, the Arkadelphia $PM_{2.5}$ monitor should not be used for $PM_{2.5}$ attainment decisions for the annual $PM_{2.5}$ National Ambient Air Quality Standards (NAAQS), and should be reclassified as a non-regulatory, non-NAAQS monitor for the purpose of comparison to the annual $PM_{2.5}$ NAAQS.

Figure 1 displays the 2023 annual average daily traffic (AADT) count of 94,775 (indicated in the box) near the Arkadelphia monitoring site (indicated by the yellow star). According to the 2023 AADT data, this is one of the highest traffic count areas in Jefferson County. This information was obtained from Alabama Department of Transportation (https://aldotgis.dot.state.al.us/TDMPublic/).

Figure 1: Traffic Count by the Arkadelphia Monitoring Site.

Since the near-road Arkadelphia monitoring site should be classified as having a spatial scale of "micro," it then should not be eligible for comparison to the annual PM_{2.5} NAAQS per 40 CFR 58.30:

58.30 Special considerations for data comparisons to the NAAQS.

(a) Comparability of PM_{2.5} data. The primary and secondary annual and 24-hour PM_{2.5} NAAQS are described in part 50 of this chapter. Monitors that follow the network technical requirements specified in § 58.11 are eligible for comparison to the NAAQS subject to the additional requirements of this section. PM_{2.5} measurement data from all eligible monitors are comparable to the 24-hour PM_{2.5} NAAQS. PM_{2.5} measurement data from all eligible monitors that are representative of area-wide air quality are comparable to the annual PM_{2.5} NAAQS. Consistent with appendix D to this part, section 4.7.1, when micro- or middle-scale PM_{2.5} monitoring sites collectively identify a larger region of localized high ambient PM_{2.5} concentrations, such sites would be considered representative of an area-wide location and, therefore, eligible for comparison to the annual PM_{2.5} NAAQS. PM_{2.5} measurement data from monitors that are not representative of area-wide air quality but rather of relatively unique micro-scale, or localized hot spot, or unique middle-scale impact sites are not eligible for comparison to the annual PM_{2.5} NAAQS. PM_{2.5} measurement data from these monitors are eligible for comparison to the 24-hour $PM_{2.5}$ NAAQS. For example, if a micro- or middle-scale $PM_{2.5}$ monitoring site is adjacent to a unique dominating local PM_{2.5} source, then the PM_{2.5} measurement data from such a site would only be eligible for comparison to the 24-hour PM_{2.5} NAAQS. Approval of sites that are suitable and sites that are not suitable for comparison with the annual PM_{2.5} NAAQS is provided for as part of the annual monitoring network plan described in § 58.10.

Outside of the historically highest $PM_{2.5}$ monitor in the Birmingham-Hoover MSA (North Birmingham), for the 2021-2023 design values, the Arkadelphia site is 0.7 to 1.1 μ gm³ <u>higher</u> than other $PM_{2.5}$ monitors in the Birmingham-Hoover MSA. Also, the Arkadelphia site is not

representative of other areas along the interstate because the site location was chosen near one of the highest traffic counts in the MSA making it "adjacent to a unique dominating local $PM_{2.5}$ source." Therefore, the Arkadelphia site is not representative of area-wide air quality in the Birmingham-Hoover MSA and is not eligible for comparison to the annual $PM_{2.5}$ NAAQS.

- **Site Approval Status:** Site and monitors meet all design criteria for the monitoring network. The meteorological tower is approximately 30 meters above ground level. The NO_x and CO sample inlets are approximately 4.2 meters above ground level. The manual particulate monitor is approximately 4.8 meters above ground level. A tree is located west of the site, approximately 10.7 meters. There are no other trees or obstacles that would impact the siting criteria for this site.
- **5.** Tarrant (01-073-6002) JCDH operates one O₃ monitor, one continuous FEM PM₁₀ monitor, one manual FRM PM_{2.5} monitor, and one continuous FEM PM_{2.5} monitor at this site. A new shelter building was installed for this site in Q1 of 2025. JCDH formally requests a 2-year PM_{2.5} NAAQS exclusion for the continuous FEM PM_{2.5} monitor while it is operated as an SPM under 40 CFR 58.20 to assess the PM_{2.5} FEM data comparability as required by 40 CFR 58.11(e).
 - Site Approval Status: The O₃ monitor sample inlet is approximately 4.3 meters above ground level. The continuous particulate monitor is approximately 4.4 meters above ground level. A tree is located north of the site, at approximately 11 meters. Another tree is located northeast of the site, at approximately 10 meters. No trees or obstacles impact the siting criteria for this site.
- 6. Wylam (01-073-2003) JCDH operates one continuous FEM PM₁₀ monitor, one continuous FEM PM_{2.5} monitor, two manual FRM PM_{2.5} monitors, speciated PM_{2.5}, one O₃ monitor, one SO₂ monitor, and one CO monitor at this site. EPA special study sampling of Cr6+ ended in summer 2024 and a risk assessment is being completed by EPA. All monitors at the former Fairfield monitoring site (O₃, SO₂, and CO) were moved to the Wylam site during Summer 2024. JCDH formally requests a 2-year PM_{2.5} NAAQS exclusion for the continuous FEM PM_{2.5} monitor while it is operated as an SPM under 40 CFR 58.20 to assess the PM_{2.5} FEM data comparability as required by 40 CFR 58.11(e). JCDH will be relocating the QA collocated FRM PM_{2.5} monitor from Wylam to North Birmingham site during summer 2025. JCDH intends to discontinue CO monitoring at Wylam in 2025 in accordance with 40 CFR monitoring requirements. JCDH has recorded concentrations from this monitor which are far below NAAQS standards. The CO monitor shows data completeness for 2019-2024 over 95%, with annual mean concentrations under 0.5 PPM during that timeframe. This monitor also did not record maximum hourly concentrations for 1-HR standard above 1.8PPM and 8-HR Standard above 1.4PPM throughout a five-year period. With the NAAQS Standard for CO set at 9PPM and 35PPM for the 8-Hr and 1-HR levels respectively, this monitor is routinely far below the NAAQS. As this monitor is not a regulatory requirement, we intend to remove it from Wylam according to 40 CFR part 58.
 - **Site Approval Status:** The sample inlets for the continuous particulate monitors are approximately 4.5 meters above ground level. The manual particulate monitors are

approximately 5 meters above ground level, and the sample inlet for the speciated $PM_{2.5}$ is approximately 4.8 meters above ground level. No trees or obstacles impact the siting criteria for this site.

6.0 Monitoring Site Location Coordinates

Site Name Site ID		Address	Latitude	Longitude
Arkadelphia	01-073-2059	1110 5th Street West, Birmingham, AL	33.5215	-86.8444
Leeds	01-073-1010	201 Ashville Road, Leeds, AL	33.5394	-86.5518
McAdory	01-073-1005	4821 McAdory School Road, McCalla, AL	33.3316	-87.0001
North Birmingham	01-073-0023	3009 28th Street North, Birmingham, AL	33.5530	-86.8147
Tarrant	01-073-6002	1269 Portland St, Tarrant, AL	33.5783	-86.7738
Wylam	01-073-2003	1242 Jersey St, Birmingham, AL	33.4997	-86.9241

7.0 Monitoring Network Assessment

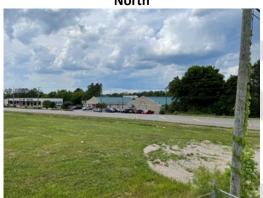
	MONITORING NETWORK ASSESSMENT									
	Leeds 01-073-1010									
Parameter	Code	POC	Method	Method Description	Manual/Continuous	Site Type	Siting Scale	Monitor Objective	Monitor Type	
О3	44201	1	087	UltraViolet Absorption	Continuous	Population Oriented	Neighborhood	Population Exposure	SLAMS	
PM _{2.5}	88101	1	145	VSCC Gravimetric	Manual	Population Oriented	Neighborhood	Population Exposure	SLAMS	
PM ₁₀	81102	4	639	Broadband Spectroscopy	Continuous	Population Oriented	Neighborhood	Population Exposure	SLAMS	
PM _{2.5}	88101	3	638	Broadband Spectroscopy	Continuous	Population Oriented	Neighborhood	Population Exposure	SPM	
					McAdor	y 01-073-1005				
Parameter	Code	POC	Method	Method Description	Manual/Continuous	Site Type	Siting Scale	Monitor Objective	Monitor Type	
О3	44201	1	087	UltraViolet Absorption	Continuous	Population Oriented	Neighborhood	Population Exposure	SLAMS	
PM _{2.5}	88101	1	145	VSCC Gravimetric	Manual	Population Oriented	Neighborhood	Population Exposure	SLAMS	
PM _{2.5}	88101	2	638	Broadband Spectroscopy	Continuous	Population Oriented	Neighborhood	Population Exposure	SPM	
					North Birmingha	m (NCore) 01-073-	0023			
СО	42101	2	093	Gas Filter Correlation	Continuous	Population Oriented	Neighborhood	Population Exposure	SLAMS	
SO ₂	42401	2	100	UltraViolet Fluorescence	Continuous	Population Oriented	Neighborhood	Population Exposure	SLAMS	
NO ₂	42602	2	200	Photolytic Chemiluminescence	Continuous	Population Oriented	Neighborhood	Population Exposure	SLAMS	
O ₃	44201	1	087	UltraViolet Absorption	Continuous	Population Oriented	Neighborhood	Population Exposure	SLAMS	
PM _{2.5}	88101	1	145	VSCC Gravimetric	Manual	Population Oriented	Neighborhood	Highest Concentration/Pop Exp	SLAMS	
PM ₁₀	81102	4	639	Broadband Spectroscopy	Continuous	Population Oriented	Neighborhood	Population Exposure	SLAMS	
PM _{2.5}	88101	3	638	Broadband Spectroscopy	Continuous	Population Oriented	Neighborhood	Highest Concentration/Pop Exp	SPM	
	Arkadelphia (Near-Road) 01-073-2059									
Parameter	Code	POC	Method	Method Description	Manual/Continuous	Site Type	Siting Scale	Monitor Objective	Monitor Type	
СО	42101	1	093	Gas Filter Correlation	Continuous	Population Oriented	Microscale	Source Oriented	SLAMS	
NO ₂	42602	1	200	Photolytic Chemiluminescence	Continuous	Population Oriented	Microscale	Source Oriented	SLAMS	
PM _{2.5}	88101	1	145	VSCC Gravimetric	Manual	Population Oriented	Microscale	Source Oriented	SLAMS	

	MONITORING NETWORK ASSESSMENT									
	Tarrant 01-073-6002									
Parameter	rameter Code POC Method Method Description Manual/Continuous Site Type Siting Scale Monitor Objective Monitor Ty								Monitor Type	
O ₃	44201	1	087	UltraViolet Absorption	Continuous	Population Oriented	Neighborhood	Highest Concentration	SLAMS	
PM _{2.5}	88101	1	145	VSCC Gravimetric	Manual	Population Oriented	Neighborhood	Population Exposure	SLAMS	
PM ₁₀	81102	3	639	Broadband Spectroscopy	Continuous	Population Oriented	Neighborhood	Population Exposure	SLAMS	
PM _{2.5}	88101	2	638	Broadband Spectroscopy	Continuous	Population Oriented	Neighborhood	Population Exposure	SPM	
	Wylam 01-073-2003									
Parameter	Code	POC	Method	Method Description	Manual/Continuous	Site Type	Siting Scale	Monitor Objective	Monitor Type	
СО	42101	1	093	Gas Filter Correlation	Continuous	Population Oriented	Neighborhood	Population Exposure	SLAMS	
О3	44201	1	087	UltraViolet Absorption	Continuous	Population Oriented	Neighborhood	Population Exposure	SLAMS	
PM _{2.5}	88101	1	145	VSCC Gravimetric	Manual	Population Oriented	Neighborhood	Population Exposure	SLAMS	
PM _{2.5}	88101	2	145	VSCC Gravimetric	Manual	Population Oriented	Neighborhood	Population Exposure	SLAMS	
	04400	2	639	Broadband Spectroscopy	Continuous	Population Oriented	Neighborhood	Population Exposure	SLAMS	
PM ₁₀	81102	2	039	втоациани эрестгозсору	Continuous	i opulation offented	rteignoornood	r opalation Exposure	327 (1413	
PM ₁₀	81102 88101		638	Broadband Spectroscopy	Continuous	Population Oriented	J	Population Exposure	SPM	

Appendix A: Monitoring Site Photos and Maps

<u>Leeds</u> Site ID: 01-073-1010

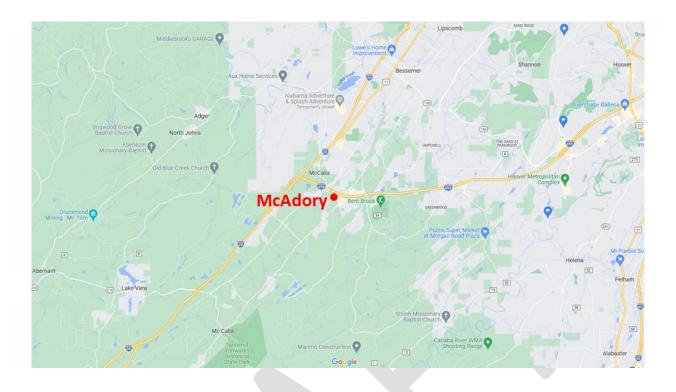
North

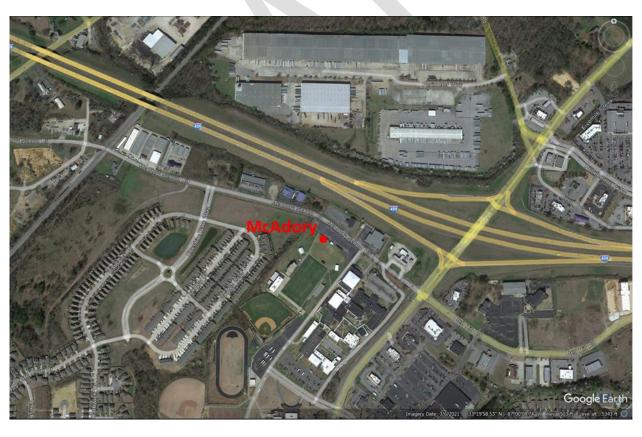


McAdory

Site ID: 01-073-1005

North



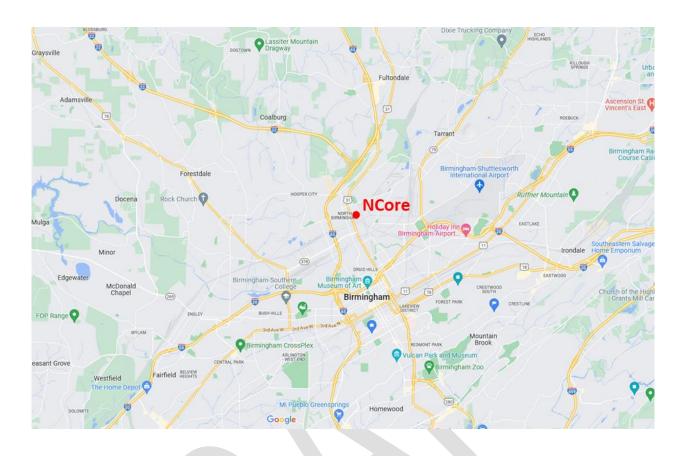

East

West

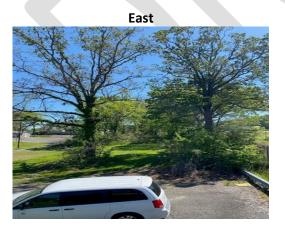
North Birmingham (NCore)

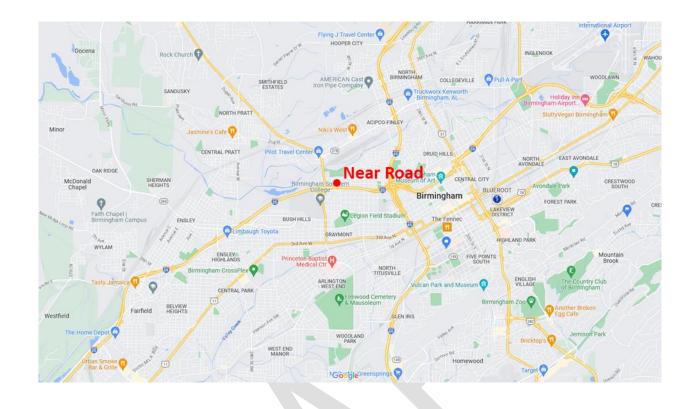
Site ID: 01-073-0023

North South

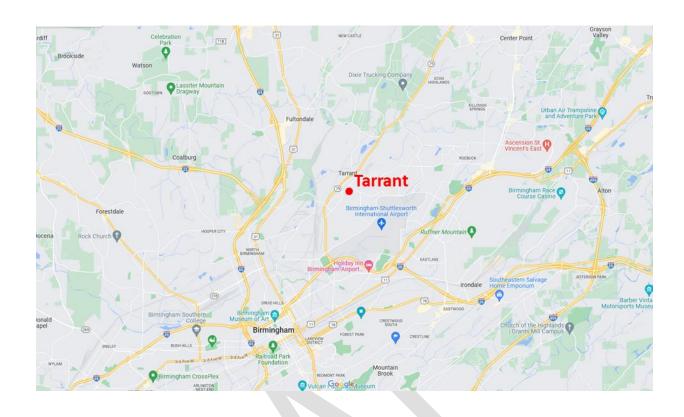


Arkadelphia (Near-Road)

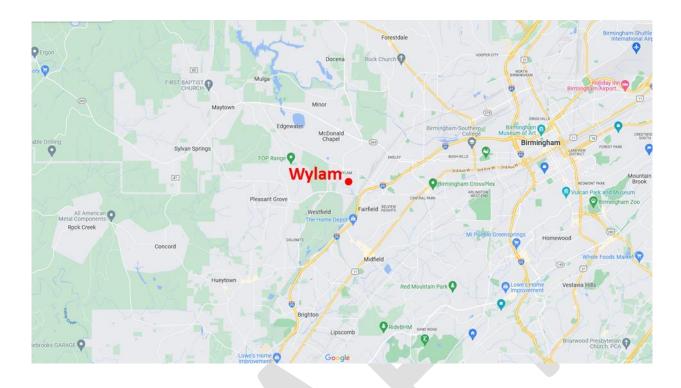

Site ID: 01-073-2059

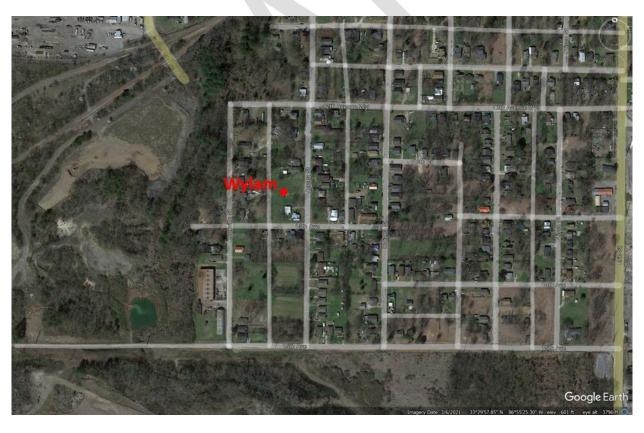


Tarrant Site ID: 01-073-6002



WylamSite ID: 01-073-2003





South

Appendix B: Inventory of Monitoring Equipment

Inventory of Monitoring Equipment									
Leeds 01-073-1010									
Item Description	Manufacturer	Model	Serial Number	Condition					
PM Manual Instrument	Thermo	2025i	21681	Good					
PM Continuous Instrument	Teledyne	T640x	1278	Good					
Ozone Analyzer	Teledyne	T400	6419	Good					
Zero Air Generator	Teledyne	701	4657	Good					
Calibrator	Teledyne	T703	957	Good					
Data Logger	Agilaire	8872	1018	Good					
86		01-073-1005							
PM Manual Instrument	Thermo	2025i	21687	Good					
PM Continuous Instrument	Teledyne	T640x	514	Poor					
Ozone Analyzer	Teledyne	T400	6420	Good					
Zero Air Generator	Teledyne	701	5676	Good					
Calibrator	Teledyne	703E	959	Good					
Data Logger	Agilaire	8872	1268	Good					
		(NCore) 01-073-0		0000					
PM Manual Instrument	Thermo	2025i	21685	Good					
PM Continuous Instrument	Teledyne	T640x	947	Good					
Ozone Analyzer	Teledyne	T400	6993	Good					
,	Teledyne	T300U	384	Good					
CO Analyzer			318	Good					
SO ₂ Analyzer	Teledyne	T100U T200U	288						
NOy Analyzer	Teledyne			Good					
NOx Analyzer	Teledyne	T200UP	83	Good					
Zero Air Generator	Teledyne	701H	750	Good					
Calibrator	Teledyne	T700U	803	Good					
Data Logger	Agilaire	8872	1017	Good					
Rain Gauge	MetOne	370	P17785	Good					
Ceiliometer	Vaisala	CL51	P1750410	Good					
Wind Sensor	MetOne	50.5	411556	Good					
Temp Sensor	MetOne	BX-597A	B17168	Good					
Solar Sensor	Licor	Li-200R	Py-113347	Good					
SASS	MetOne	Super Sass	X22221	Good					
URG	MetOne	URG-300N	3N-B0160	Good					
PAMS	-	-	-	Good					
IMPROVE	-	-	BIRM1	Good					
RADNET	HI-a	Hvp-4004 BL-S	16145	Good					
	Arkadelphia (Nea	ır-Road) 01-073-20	59						
PM Manual Instrument	Thermo	2025i	21682	Good					
CO Analyzer	Teledyne	T300U	584	Good					
NOx Analyzer	Teledyne	T200UP	197	Good					
Zero Air Generator	Teledyne	701H	1910	Good					
Calibrator	Teledyne	T700U	199	Good					
Data Logger	Agilaire	8872	1266	Good					
Wind Sensor	MetOne	50.5H	P17504	Good					
Temp/BP/RH Sensor	MetOne	BX 597A	C14318	Good					
Solar Sensor	LiCor	LI-200R	PY116632	Good					
Rain Gauge	MetOne	370	A5752	Good					

Inventory of Monitoring Equipment									
Tarrant 01-073-6002									
Item Description	Manufacturer	Model	Serial Number	Condition					
PM Manual Instrument	Thermo	2025i	21833	Good					
PM Continuous Instrument	Teledyne	T640	1766	Good					
Ozone Analyzer	Teledyne	T400	6994	Good					
Zero Air Generator	Teledyne	701	5786	Good					
Calibrator	Teledyne	T703	958	Good					
	Wylam	01-073-2003							
PM Manual Instrument	Thermo	2025i	21683	Good					
PM Manual Instrument	Thermo	2025i	21684	Good					
PM Continuous Instrument	Teledyne	T640x	1765	Good					
Data Logger	Agilaire	8872	1265	Good					
URG	MetOne	URG-300N	B0454	Good					
SASS	MetOne	Super Sass	A3075	Good					
Ozone Analyzer	Teledyne	T400	4285	Good					
SO ₂ Analyzer	Teledyne	T100U	509	Good					
CO Analyzer	Teledyne	T300	3377	Good					
Zero Air Generator	Teledyne	T701H	234	Good					
Calibrator	Teledyne	T700U	332	Good					

Inventory of Backup Monitoring Equipment								
Located at Shop								
Item Description Manufacturer Model Serial Number Conc								
CO Analyzer	Teledyne	T300U	582	Fair				
CO Analyzer	Teledyne	T300U	382	Poor				
CO Analyzer	Teledyne	T300U	134	Fair				
Ozone Analyzer	Teledyne	T400	1803	Good				
SO2 Analyzer	Teledyne	T100U	284	Good				
SO2 Analyzer	Teledyne	T100U	298	Fair				
SO2 Analyzer	Teledyne	T100U	188	Poor				
PM Continuous Instrument	Teledyne	T640X	1277	Good				
NOx Analyzer	Teledyne	T200UP	69	Fair				
NOx Analyzer	Teledyne	T200UP	156	Fair				
Zero Air Generator	Teledyne	T701	1911	Fair				
Zero Air Generator	Teledyne	701	4528	Fair				
Zero Air Generator	Teledyne	701	5596	Poor				
Zero Air Generator	Teledyne	751H	419	Good				
Zero Air Generator	Teledyne	701	5677	Good				
Zero Air Generator	Teledyne	701	5595	Good				
Zero Air Generator	Teledyne	701	1909	Fair				
Zero Air Generator	Teledyne	701	4658	Good				
Calibrator	Teledyne	750U	69	Fair				
Calibrator	Teledyne	T700U	169	Fair				
Calibrator	Teledyne	703E	857	Good				
Ozone Lvl 2 SRP Calibrator	Thermo	49 C	75470	Fair/Good				
Ozone Lvl 2 SRP Calibrator	Thermo	iQ49	6852	Good				
Ozone Lvl 2 SRP Calibrator	Thermo	iQ49	6851	Good				
Data Logger	Agilaire	8872	0615	Good				
Data Logger	Agilaire	8872	1267	Good				
Data Logger	Agilaire	8872	823	Good				
Data Logger	Agilaire	8872	418	Good				
Data Logger	Agilaire	8872	1315	Good				
Data Logger	Agilaire	8872	1269	Good				

All listed equipment in this Appendix is as of May 2025.